k-Distinct In- and Out-Branchings in Digraphs

نویسندگان

  • Gregory Gutin
  • Felix Reidl
  • Magnus Wahlström
چکیده

An out-branching and an in-branching of a digraph D are called kdistinct if each of them has k arcs absent in the other. Bang-Jensen, Saurabh and Simonsen (2016) proved that the problem of deciding whether a strongly connected digraph D has k-distinct out-branching and inbranching is fixed-parameter tractable (FPT) when parameterized by k. They asked whether the problem remains FPT when extended to arbitrary digraphs. Bang-Jensen and Yeo (2008) asked whether the same problem is FPT when the out-branching and in-branching have the same root. By linking the two problems with the problem of whether a digraph has an out-branching with at least k leaves (a leaf is a vertex of out-degree zero), we first solve the problem of Bang-Jensen and Yeo (2008). We then develop a new digraph decomposition called the rooted cut decomposition and using it we prove that the problem of Bang-Jensen et al. (2016) is FPT for all digraphs. We believe that the rooted cut decomposition will be useful for obtaining other results on digraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arc-Disjoint Paths and Trees in 2-Regular Digraphs

An out-(in-)branching B s (B − s ) rooted at s in a digraph D is a connected spanning subdigraph of D in which every vertex x 6= s has precisely one arc entering (leaving) it and s has no arcs entering (leaving) it. We settle the complexity of the following two problems: • Given a 2-regular digraph D, decide if it contains two arc-disjoint branchings B u , B − v . • Given a 2-regular digraph D,...

متن کامل

Tight Bounds and Faster Algorithms for Directed Max-Leaf Problems

An out-tree T of a directed graph D is a rooted tree subgraph with all arcs directed outwards from the root. An out-branching is a spanning out-tree. By l(D) and ls(D) we denote the maximum number of leaves over all out-trees and out-branchings of D, respectively. We give fixed parameter tractable algorithms for deciding whether ls(D) ≥ k and whether l(D) ≥ k for a digraph D on n vertices, both...

متن کامل

Small degree out-branchings

Using a suitable orientation, we give a short proof of a result of Czumaj and Strothmann [3]: Every 2-edge-connected graph G contains a spanning tree T with the property that dT (v) ≤ dG(v)+3 2 for every vertex v. Trying to find an analogue of this result in the directed case, we prove that every 2-arc-strong digraph D has an out-branching B such that d+B(x) ≤ d+D(x) 2 + 1. As a corollary, ever...

متن کامل

Out-branchings with Extremal Number of Leaves

An out-tree T in a digraph D is subgraph of D which is an orientation of a tree that has only one vertex of in-degree 0 (root). A vertex of T is a leaf if it has out-degree 0. A spanning out-tree is called an out-branching. We’ll overview some recent algorithmic and theoretical results on out-branchings with minimum and maximum number of leaves.

متن کامل

Twin signed total Roman domatic numbers in digraphs

Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017